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It is shown that in the LCAO-MO-SCF problem, if the molecular orbital orthonormality con- 
straints are introduced in the manner first suggested by Fletcher, then the Hessian of the problem 
is singular. It is suggested that this singularity may well account for the slow convergence observed 
using direct energy minimization methods to solve the SCF problem. Ways of avoiding the conse- 
quences of this singularity are discussed. 
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1. Introduction 

Recently interest has been revived in "direct" methods of minimizing the 
energy with respect to such parameters as nuclear position, orbital exponents 
and orbital (linear) coefficients, following the pioneering work of McWeeny [ 1, 2] 
using the steepest descent methods. In particular Fletcher [3] showed how it was 
possible to use one of the more modern conjugate-direction techniques in such 
direct minimization, and an approach similar to that of Fletcher was later ex- 
ploited by Karl  and Sutcliffe [4] and by Claxton and Smith [5]. Claxton and Smith 
concentrated on optimizing the linear coefficients in an unrestricted Hartree- 
Fock (UHF) approach for systems which had proved convergent only with dif- 
ficulty using more conventional techniques. Though Claxton and Smith were 
able to obtain convergence using a direct method (in fact the Fletcher-Reeves 
method [6]), they commented that the method proceeded only very slowly and 
could not compete with conventional methods when these methods worked. The 
object of this paper is to try explain why it is that direct methods have so far 
proved so disappointing for linear coefficients in closed and in unrestricted 
L C A O - M O - S C F  calculations. 

2. Direct Methods of Minimization 

Most modern direct minimization techniques are based on choosing a 
sequence of directions in the co-ordinate space in which the function f (x )  is to 
be minimized, and finding a sequence of points by minimizing, or at least de- 
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creasing, the function value along the chosen direction until a minimum point 
is found. The most effective of the modern methods are based on the supposition 
that sufficiently close to the minimum the objective function f ( x )  can be expanded 
in a Taylor series to second order. 

f ( x )  = a + b r x  + � 8 9  (2.1) 

where x is a column vector of co-ordinates and the matrix H (the Hessian matrix 
at the minimum) is assumed to be a real symmetric, positive-definite, non- 
singular matrix. If this is possible the gradient of the function g(x) may be written 

g(x)  = b + H x .  (2.2) 

with gi(x)= Of/c~xl, and hence the minimum point a ~ may be found from any 
arbitrary point a as 

( a  ~ - a )  = - H - 1  g ( a )  (2.3) 

provided that H is non-singular. 
It can be shown that this problem can be solved in just n steps without having 

to invert H or indeed without explicit knowledge even of H, by constructing a 
sequence of conjugate-directions, that is a sequence of directions Pi such that 

pr n pj = O, i # j , (2.4) 

r 0 gi+ l Pi= , (2.5) 

and minimizing the function along these directions. That is, if at any point x = a, 
one knows the direction p =-p(a), then one constructs the function 

F(2) = f ( a  + 2p) (2.6) 

and finds the value of 2, e say, that minimizes F(2) and then the next point in the 
descent sequence, h, is chosen according to 

h = a + c~p. (2.7) 

It is easy to see that at the point a 

where 

and that therefore 

and that 

O r p = 0 (2.8) 

0 - g(h) (2.9) 

f ( h )  - f ( a )  = - (gr p)Z/2pr H p  (2.10) 

= - g r p / p r H p .  (2.11) 

Many methods are available for choosing such conjugate direction, examples 
are the method of Powell [7] which does not use the gradient matrix, the method 
of Fletcher and Reeves [6J which uses the gradient matrix and Fletcher and 
Powell's modification of Davidon's method [8], which uses the gradient matrix 
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and also yields an estimate of the inverse Hessian at the minimum. A general 
discussion of such methods in the case of quadratic functions may be found in 
Huang [9] see also Dixon [10]. 

It is clear however from the above discussion that considerable difficulties 
may arise in utilizing one of these methods if the Hessian matrix is not positive 
definite. Thus in this case it is possible that the denominators in (2.10) and (2.11) 
become zero so that the location of a minimum in the direction p is just not possible. 
Even if the methods do not fail overtly because of this, it is the case that proof 
of quadratic termination for the methods depends on the positive definiteness 
of H so that one might well expect poor convergence even when the method does 
not fail outright. 

We shall now show that the Hessian at the minimum in the closed shell SCF 
problem is indeed singular and we suggest that this may be the origin of the 
difficulties experienced by Claxton and Smith and others. The demonstration we 
use may be generalized immediately to the U H F  problem. 

3. The L C A O - M O  Closed Shell Problem 

Using the notation of McWeeny and Sutcliffe [11] the energy function in the 
closed shell problem may be written as 

E = 2 t r h R  + tr G(R) R (3.1) 

where h is the matrix of one electron integrals and G(R) the usual electron inter- 
action matrix, both in the atomic orbital basis. The matrix R is defined as 

R = T T r (3.2) 

where T is the m by n matrix that relates the n doubly-occupied molecular orbitals 
to the chosen atomic orbital basis 0/). 

This function as it stands is not a suitable object for use in a direct minimisa- 
tion procedure since the variables of the problem, the linear coefficients, T~ r, are 
constrained by the orthonormality requirements among the molecular orbitals, 
namely 

TT S T = I (3.3) 

where S is the overlap matrix in the atomic orbital basis and I is the n dimensional 
unit matrix. 

These constraints can be incorporated, as was first shown by Fletcher [3], 
by writing 

r = Y U (3.4) 

where Y is an m by n matrix of unconstrained variables and the n by n matrix U 
is chosen to supply the constraints. In terms of (3.3) it is seen that U must satisfy 
the equation 

U U ~ = ( V r S  Y) -~ (3.5) 
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and for the sake of brevity we denote (YrS Y) by A. It follows therefore that we 
may write 

R = YA - 1 y r  (3.6) 

and since the energy depends only on R, we see that it is unnecessary to specify U 
more closely than by (3.5). 

Following Fletcher [3] (see also Kari  and Sutcliffe [12]) we may determine 
the gradient of E with respect to the variables Y~r by noting that under the change 
Y-~ Y +  3Y such that E--,E+ fiE, then 

R-- ,R  + YA -~ 3 Yr(I - SR) + ( I -  RS) 6A-1 yr ,  

where 

and that 

A-I_._~ A-1 = A- i  fAA-1 ,  

3 A = f y T s y +  yTSc~Y 

where 

and hence 

G(R)--, G(R) + G(6 R) . 

After a little manipulat ion it may be shown that for real Y, that 

fiE = 4 t r ( l -  SR)fYA-16yT 

f =  h + G(R),  

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

dE 
- -  = 4( ( I  - SR)fYA-1},,  (3.13) 
dyer 

so that the gradient can in this case be represented by an m by n matrix 

V = 4 ( 1 -  SR)fYA-1 (3.14) 

with the row indices labelling the atomic, and the column indices the molecular 
orbitals. 

It would thus seem that choice of the elements of Y as the variables of 
minimization according to (3.4) is an extremely good choice since one is able to 
express the gradient of the energy in a compact  manner  in terms of them. Further- 
more, as they are peculiarly suitable for a direct minimization procedure pre- 
cisely because they are unconstrained variables and so do not need to be modified 
to satisfy an ancillary condition at each iteration. As was pointed out by Fletcher 
[3] if one chooses a variable set subject to an ancillary condition which one 
needs to restore at the end of an iteration (for example if one chose T) and 
restored orthonormali ty one cannot use a direct minimization process because 
the information from the previous iteration is "spoiled" by the restoration of 
constraints and so the advantages of direct minimization are lost. However the 
advantages of many direct minimization procedures may well be lost if the 
Hessian at the minimum turns out to be singular, and as we shall now show, 
unfortunately on the basis provided by the elements of Y the Hessian at the 
minimum is indeed singular. 

To determine the Hessian of the problem we must find the second variation 
in E, and it is easy to see that under a variation Y ~ Y + 6 Y we get V ~ V + V ~ 
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where: 

where 

V 1 = 4 { -  S f R f Y A  - 1  -t- (I -- SR) ( f3 Y A - 1  - f Y A - 1 6 A A - 1 )  

+ (I - SR) G(fR)  YA  -1} (3.15) 

= 4 { ( I -  SR) ( f3  Y A - 1  - f Y A - 1 3 A A - 1 ) ,  

- S ( Y A - 1 3  Y ( I  - SR) + (I - RS) 6 y A - 1  Y ) f Y A - 1  
. ( 3 . 1 6 )  

"~ ~ j= l r~= l x jr (~ ~JJ'r} 

j r  Xi, - ~ (I - S R ) i q ( I -  SR)jp(Bpl,qk + Blp,qk) (YA-1)Ir (YA-1)k ,  (3.17) 
klqp = 1 

where Bpl,q k is the electron-repulsion supermatrix with elements 

Bpl,q k = 2 ( q p [ g l k l )  - ( q p l g l l k )  (3.18) 

where the integral notation is that of McWeeny and Sutcliffe [11]. 
Since we are interested only in the Hessian at the minimum, we can use the 

fact that at the minimum V = 0 ,  to to simplify (3.16) somewhat, and it is easily 
seen tha t  at the minimum the second and third terms in (3.16) vanish to give 

V 1 : 4 I ( l  - SR) ( f3  Y A - 1  _ $3 Y A - 1  Y f Y A - t )  
1 

that is 

+ E 1 E 
j =  r = l  ) 

(3.19) 

c~2 E 
- -  f )ij rs - ((I - S R) S)ij t?y~rc3y~s - 4 { ( ( I - S R )  A - '  

�9 (A -1 y T f y  A -1)r  s + x ~ r }  

(3.20) 

so that the Hessian at the minimum has elements given by (3.20) where it is 
understood that all quantities dependent on Y in (3.20) are given in terms of the 
minimizing Y, though this is not explicitly indicated in the equation. 

From (3.14) it is easy to see that at the minimum 

f R S  - S R f R S  = 0 (3.21) 

and that 
S R f  - S R f R S  = 0 (3.22) 

so that the matrix (I - S R ) f  is symmetric at the minimum and hence the Hessian 
itself is symmetric, as required. We can therefore write the Hessian as a par- 
titioned matrix of dimension n by n in blocks of dimension m by m, the MO's 
labelling the blocks and the AO's labelling the runs and columns within a block. 
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where 

and 

The r, s b lock clearly has the s t ructure  

H rs = 4AZ 1 (I - S R ) f  - 4 A ~  1 (I - S R )  S 
+ 4 Z ~ (3.23) 

A =  A ( Y T  f Y ) - I  A (3.24) 

Z'j~ = X[~ r . (3.25) 

N o w  let us suppose  that  we have found a matr ix  T, that  minimises E by 
satisfying the usual equat ions  

f T  = S T e ,  (3.26) 

T r S T = I .  (3.27) 

Then  we know that  we can write the minimizing R as T T  r and the m i n i m u m  f 
as the one ob ta ined  f rom (3.26). Consider  now the mn by 1 co lumn matr ix  t whose 
first m rows are T 1 whose second m rows are T2, and so on, where T~ is the r ' th  
co lumn of 7". We can then cons t ruc t  

= H t  (3.28) 

where i is a co lumn matr ix  whose first m rows are 

i 1 =  L HlST~ (3.29) 
S=I 

and so on. If we write out the expression for t r explicitly we get 

g = 4  L A ~ ( I - S R ) f T - A ~ I ( I - S R ) S T + Z ~ T ~  �9 
s = l  

But 
(I -- S R ) f T ~  = f T ~  - S T T +  fT~ 

=fT~-,sS~ 
= 0 ,  

(3.30) 

(3.31) 

and 

where 

g r s , j  p ~-- 
k , l ,q  = 1 

(I-SR) ST~=ST~-STTST~ 
=ST,-ST~ 
=0~ 

(Z~T,)j = ~ Z~" T~ 
i=I 

= ~ X~,,jv(l  - SR)~p T~, 
i p=  1 

(I -- S R)jq (Bp~, qk + BpL kq) ( Y A  - ~)~ ( Y A  - X)k~ 

(3.32) 

(3.33) 

(3.34) 
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so that 

i ,p= 1 1 m ( ) 

= 0 .  

We therefore conclude that ) =  O, so that we can write: 

(3.35) 

H t  = O t  (3.36) 

and hence we conclude that t is an eigenvector of H with zero eigenvalue so 
that H is singular and not positive definite. 

In fact the above demonstration may easily be extended to show that the 
Hessian at the minimum has precisely n 2 zero roots, by the following means. 
We can regard the Hessian as being defined in an m n  dimensional vector space 
and we can define a basis in this space by choosing n 2 vectors tp, p = 1, 2 . . . . .  r a n ,  

according to the following specification. Select one column Tq from the n possible 
columns of Z Let tp be the vector that has Tq as its first m rows and is null 
elsewhere, let tp+~ have Tq as the second m rows and be null elsewhere and so on. 
It is easy to see that the n 2 vectors so chosen are linearly independent since they 
are orthonormal in a metric specified by the matrix partitioned as is H but with S 
forming the diagonal blocks and with null blocks elsewhere. It follows at once 
from (3.29) to (3.34) that these rt 2 vectors are eigen-vectors of H with null eigen- 
values. The vector t that we chose in equation (3.28) is of course just the linear 
combination of degenerate eigenvectors 

t - - - - t  1 + t n + 2  + t 2 n + 3  + " "  + t n 2  . (3.37) 

4. The Origin of the Zero Roots in the Hessian 

Let us suppose for the moment that we had formulated our energy expression 
originally in terms of a set of non-orthonormal orbitals related to the atomic 
basis r/ by the matrix Y. Then it is easy to see, using the formulae for matrix 
elements between determinants of non-orthogonal orbitals (see e.g. E11], p. 49-51) 
that the energy expression obtained is just (3.1) but now with R defined directly 
by (3.6). Thus had we worked without any constraints at all, we would have 
obtained precisely the same equations as we have already for the gradient and 
for the Hessian and would, in consequence, have encountered precisely the same 
difficulties. In the light of this it is perhaps misleading to regard U in Eq. (3.4) 
as a constraint supplying matrix, but rather as a constraint removing matrix. 
One can therefore regard the minimization problem we have so far formulated 
as the one of determining the non-orthonormal molecular orbital at any stage 
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and then, using the freedom that one has on the one-determinant approximation,  
performing a linear transformation among them to produce an or thonormal  set. 
It would seem likely therefore that it is precisely because we have, even at the 
minimum, this freedom to perform an arbitrary n by n linear transformation 
among the solution vectors that we have a Hessian with n 2 degenerate zero roots. 
It further seems likely that if instead of removing the constraints we had used the 
constraints to remove variables from the problem and hence effectively to 
remove the freedom to perform an arbitrary linear transformation among the 
solution vectors, then we should not have a singular Hessian for the problem. 
That  this removal is, in certain circumstances, possible and does indeed have the 
required results is easy to see from the following example. 

Let us suppose that we are working, not in an arbitrary basis of AO's, but 
in a basis of exact canonical MO's ,  numbered in order of increasing orbital 
energy el,/32 . . . . .  13 . . . . . .  /3n, and let us further suppose that we require the orbitals 
at any stage to be orthonormal.  At the minimum we shall have a matrix 

T = m _ n n  (-Qor-) = Y U  (4.1) 

where Q is an arbitrary orthogonal  matrix and if the minimization process hap- 
pens to yield the canonical molecular orbitals then Q will be the unit matrix. 

In the canonical M O  basis we shall have: 

S = I  

fiij ~ -  13i (~ij 

~cS/j; i, j < n 
Rij = [0; i, j > n (4.2) 

and at the minimum 

and after a little manipulat ion we can re-write (3.20) as 

~2E 0; i orj<=n, all r, s 

# Y~/3 Ya 451j(/3jAG 1) _ (013o ur ) , . ,  (4.3) 
/ 7  

+ ~ (Bj,;j v + Btj, j,, ) Uv~ U,, ; with i and j > n 
v t =  1 

where U = UQ (4.4) 

and where 13o is the diagonal matrix composed of/31,/32 . . . . .  /3,. 
If  it so happens that the minimization process yields the canonical orbitals 

with U = I also, that is of Y~, =- T~ r, then (4.3) simplifies further so that the Hessian 
has elements: 

~2 E 
- -  = 0 ;  i , j<n  
0~r~r,s 

= [4 (e j  - s~) 5ijfr, 
+ 8(ijlglsr) - 4 ( U l g i r s )  ; 

+ 8 (irlglsj) - 4(irtg Ijs)]  �9 

i,j > n 

(4.5) 
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This matrix may easily be transformed by elementary operations to be a matrix 
null except for one diagonal block of side m n -  n 2, hence confirming that the 
Hessian has just n 2 zero roots. 

Now let us partition Y as T is partitioned in (4.1) viz: 

y =  n ( Y t )  (4.6) 
m -  n - Y b -  

thus from (4.1), at the minimum we must have 

~ u =  Q~, (4.7) 

Yb U = O. (4.8) 

Assuming that U is non-singular (4.8) implies that at the minimum Yb is a null 
matrix, and therefore at the minimum the orthogonality constraint (3.3) becomes 

u ~ E~ Y, u = (r~ u)T(r, u) = I (4.9) 

thus at the minimum the matrix Yt U must, by virtue of the orthogonality con- 
straint alone, be an orthogonal matrix. This means that we can make an arbitrary 
initial choice of Yt, and keep this choice fixed throughout the minimization as 
long as U remains defined and a minimum can be found with this choice of Yr. 
It is obvious in this case that a minimum can be found if we choose initially Y~ 
as the unit matrix (or indeed as any orthogonal matrix) and make an initial 
estimate of Yb such that Yb T Yb has all its eigenvalues greater than - 1. In fixing 
Yt we have removed n 2 variables from the problem and thus the gradient matrix 
now has r a n -  n 2 elements and the Hessian matrix consists of blocks H rs com- 
posed simply of the non-zero parts of (4.3). It is easy to see that with this choice 
all the singularities in the Hessian have been eliminated. Indeed it is fairly clear 
that one need not (though one may on this basis) fix all n 2 elements of Y~. It is 
sufficient to fix �89 + 1) of them, say by choosing Y~ initially to be a unit upper 
triangle, and the singularities in the Hessian will still be removed and a solution 
will still be possible. 

In the case where we work in an arbitrary basis the situation is not so clear 
however precisely because we cannot say which elements of Y we may fix and still 
obtain a minimizing solution. Indeed it is not clear even in the very simple case 
in which Y consists of a single column only. In this case the problem is very 
similar to the problem of finding the lowest eigenvalue of a real symmetric matrix 
by minimizing the Rayleigh quotient, a problem which is discussed by Fletcher 
and Bradbury [13]. Here one can obviously avoid the singularity by fixing one 
element of the column at 1. This effectively confines the possible solutions of the 
problem to these lying on the faces of hypercube and the face of the hypercube 
along which minimization is to occur is determined by the choice of element set 
equal to 1. However it is not known in advance whether a minimum exists on 
this face. I fa  minimum does not exist on the chosen face then this should be shown 
up by an element other than that chosen becoming greater than 1, in which case 
the vector must be renormalized so that the emerging element is now 1, this 
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element must then be fixed and the minimization process started afresh along 
the newly chosen face. 

In the general case the equivalent tactic would be to fix �89 (n + 1) values of 
Y and then to attempt to minimize the energy. Presumably the equivalent 
behaviour in the event of no minimum existing would be for the matrix A to 
become singular. If this occured then one would simply have to choose a new set 
of fixed values that avoided this. Alternatively, of course, there is the possibility 
that fixing elements of Y makes the closest stationary point of the function, one 
other than the lowest minimum sought (an "excited state"): In this case also one 
would have simply to restart the process from with a new choice of fixed elements. 

It is clearly not possible to specify any general strategy in respect of choosing 
the elements of Y to be fixed, beyond saying that of course no more than n elements 
and no less than one element should be fixed in any one column. It seems a case 
where numerical trials alone can decide whether a general strategy is possible for 
the problem. In this context it is worthwhile remembering that numerical ex- 
perience up to now does indicate that the Fletcher-Reeves method, for example, 
converges quite well, even allowing all the elements of Y to vary, until one is 
fairly close to the minimum. A sensible strategy might therefore be to treat the 
full problem for a number of iterations and then to inspect the elements of the 
resulting T matrix and fix �89 (n + 1) of these in some plausible manner to define 
a starting point for the minimization in the space of reduced dimersion. 

It should also be noticed here that it is of course possible to reformulate our 
problem completely in terms of m n -  �89 (n + 1) independent variables and a way 
of doing this has been developed, for example by Raffinetti and Ruedenberg [14]. 
If such a course is adopted then it seems clear that the Hessian in the basis of 
independent variables should be free of singularities and thus a direct method 
cast in terms of these variables, should work efficiently. However it would seem 
to be the case that it is very difficult to get analytic expressions for the gradient 
matrix (and even more difficult to obtain the Hessian) in such bases. This dif- 
ficulty effectively confines the choice of a direct method to a non-gradient method 
(such as Powell's conjugate direction method). Such methods are generally found 
to be slower than gradient methods, so that it is not clear that the formulation 
in terms of independent variables should lead to a superior convergence rate in 
practice and whether it is more effective to use a Y matrix formulation or not 
therefore remains an open question. Our analysis so far however does suggest 
another method of tackling this problem in which we can actually utilize the 
presence of zero roots in the Hessian. 

5. A Direct Method Which Avoids the Zero Root Problem 

Suppose that at any stage of a minimization process we have a matrix 

T 1 = YU, T ( S T  1 =I~ (5.1) 

and from the matrix f evaluated at T 1 we construct a matrix f such that 

f :  TT fTI (5.2) 



Convergence Properties of Direct Methods of Energy Minimization 21 l 

and find a matrix Q~ which diagonalizes f such that 

[0~1 ~" 01~1, Q T  0 1  = In (5.3) 

and define a matrix Z~ =/ '1 Q~. Let us also invent an m by m - n matrix Z2 and 
define a new basis 

~b = (~b 1 ! (]~2) = / ' ] (Zl  i Zm) (5.4) 

where ~2 is diagonal 

S ~ S = I m (5.6) 

and in this basis clearly 

It then follows immediately from (3.14) (5.5), (5.6), and (5.7) that the gradient 
matrix with respect to the elements of T is just 

We can find the Hessian at the point T (that is, not at the minimum) by noting 
from (3.t5) that in general we must add to (3.20) a term for the (jr, is) element 

- (S YA -1)i r Vj~ + (S yA-1)j~ Vii r + (V yTS)ij(A - 1)r s (5.9) 

where V is given by (3.14). 
After some manipulation it can be shown that the Hessian with respect to 

the elements of T at T is blocked [cf. Eq. (3.23)] with blocks of the form 

I (1) { B(r~)\ HrS=4 "~ {-0--L-BI~-] + 4  0 I[ (5.10) . ' / ,2) \or~ I , , , .  / Br~ Ir 

Where H~ consists of the non-zero diagonal terms from (4.5): 

( H ~ ) i = ( ~ , + i - ~ ) +  3 ( ( n + i ) r l g i r ( n + i ) > - ( ( n + i ) r l g l ( n + i ) r )  (5.11) 

and the matrix H~ consists of the equivalent off-diagonal terms. 
The matrix B~ ) is null but for its r'th row which is the s'th row o f ~ 2  and 

B~, 2) is similarly null except for its s'th column which is the r'th column of J~l. 
Now we have seen in Eq. (2.10) that it is always possible to decrease the value 

of locally quadratic function if we choose a direction p such that g r p  r 0 and 
p r H p  > 0, even if H is not positive definite. Now if we choose our direction 
vector in this problem so that its r'th group of m rows is given by 

) P~= - 4 -  I H #  1 g (5.12) 

such that in this basis 
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where V~ is the r'th column of V, then it follows at once that 

r = l  j = n + l  
(5.13) 

and since the elements of H r are practically certain to be positive we have achieved 
the desired result. It is interesting to note as an aside that (5.13) also implies that 
the optimum step length, c~, along p is unity and that at a true minimum even 
though -~2 = 0, no divergence is encountered in the descent formulae (2.10) and 
(2.11). 

We can re-write (5.12) in terms of a rectangular m by r matrix P with elements 

O, i n n  
Pit = _ ~21)i- , , r / [(~i-  er) + 3( ir lg[r i  ) - ( ir[9 ] i r ) l  (5.14) 

and then the next point in the descent is found by constructing 

and minimizing the energy with respect to 2. Using (5.4) we can write the change 
in terms of the Zi as 

21 = Z 1 ~- 2 Z 2 P  b (5 .15)  

where Pb is just the non-zero part of P written as an (m - n) by n matrix. 
The matrix Z 1 does not of course satisfy the orthonormality constraints, so 

it should be regarded as a next estimate of Y and treated accordingly to determine 
2. It violates the constraints only by terms of order (P/r) 2 which vanish as the 
minimum is reached. 

The up-dating Eq. (5.15) is seen at once to be of precisely the same form as 
that proposed by Hillier and Saunders [15] and indeed our up-dating matrix Pb 
differs from the up-dating matrix B proposed by these authors only in the presence 
in Pb of electron interaction terms in the denominator. Since these terms are 
probably in most instances small compared with the orbital energy differences, 
it is perhaps legitimate to neglect them and we can regard this method as being 
essentially equivalent to that of Hillier and Saunders, but obtained from dif- 
ferent considerations. The implementation scheme that we would propose for the 
method is exactly that proposed by Hillier and Saunders except that we would 
recommend a numerical search to minimize the energy with respect to 2 rather 
than the analytical method described by these authors since by this means 
orthogonality among the orbitals can be vigorously maintained at every stage. 

Finally it is interesting to note that one can make a much more simple 
assumption about the structure of P by replacing H71 in (5.12) by a multiple of 
the unit matrix and this still preserves the local descent properties of the method. 
The method in this case becomes a variant of steepest descents and in this case 
(5.18) is replaced by 

T = T - 2 V  (5.16) 



Convergence Properties of Direct Methods of Energy Minimization 213 

and (5.19) becomes 

Z1 = Z1 - 4'~Z2"/~ 1 (5.17) 

= Z 1 - -  ) ~ Z  2 Z T f Z 1  

and using the resolution of the identity we see that 

z2zr2 = S  -~ - R (5.18) 

and therefore 

Z~ = Z~ - 42[S - t  - R] f Z a .  (5.19) 

Obviously (5.19) is a much simpler formula to implement than (5.15) and as 
such might well be worth some numerical investigation even though steepest 
descent methods are not generally considered to be very effective. 

6. Summary 

We have demonstrated in this article that the Hessian matrix at the minimum 
with respect to the linear coefficients can be singular in the closed shell LCAO- 
MO-SCF problem, for a particular and highly convenient way of choosing the 
coefficients. We suggest that this is the reason why only slow convergence has 
been achieved using such methods as the Fletcher-Reeves method, in minimizing 
the L C A O - M O  energy. The generalization of our results to the U H F  problem 
is immediate and obvious. 

We have suggested a method by which the singularities may be avoided by 
constraining the coefficients and which may well therefore have superior con- 
vergence properties. We have also established the status of the method of Hillier 
and Saunders among direct methods as a quasi-Newton method and suggested 
a new steepest descent method in the spirit of Hillier and Saunders' method. 

It would seem likely from our analysis that the singularities in the Hessian 
arise because of the freedom one has in the closed shell case to perform a linear 
transformation among the occupied orbitals while leaving the energy invariant. 
One may perhaps conjecture that such singularities may well arise in all problems 
where one has such a freedom but not in problems where this freedom is 
absent. 
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